Syntheses, reactions, and structures of osmium(II) distannyl complexes, $\mathrm{L}_{n} \mathrm{Os}-\mathrm{SnMe}_{2} \mathrm{SnR}_{3}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$, from reaction between $\mathrm{L}_{n} \mathrm{Os}-\mathrm{SnClMe}_{2}$ and either LiSnMe_{3} or KSnPh_{3}

Michael M. Möhlen, Clifton E.F. Rickard, Warren R. Roper *, George R. Whittell, L. James Wright *
Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Received 31 March 2006; received in revised form 2 June 2006; accepted 8 June 2006
Available online 15 June 2006

Abstract

Reaction between $\mathrm{Os}\left(\mathrm{SnClMe}_{2}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and either LiSnMe_{3} or KSnPh_{3} produces the distannyl complexes, $\mathrm{Os}(\mathrm{Sn}-$ $\left.\mathrm{Me}_{2} \mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{1})$ or $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(3)$, respectively. Similarly, reaction between $\mathrm{Os}\left(\mathrm{SnClMe}_{2}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6)$ and KSnPh_{3} produces the distannyl complex, $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7)$. In the ${ }^{119} \mathrm{Sn}$ NMR spectra of these stable osmium(II) distannyl complexes both the $\alpha-\mathrm{Sn}$ and β-Sn atoms show well-resolved ${ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{Sn}$ and ${ }^{119} \mathrm{Sn}-{ }^{117} \mathrm{Sn}$ coupling. Each of these three distannyl complexes can be selectively functionalised at the $\alpha-\mathrm{Sn}$ atom by reaction with $\mathrm{SnCl}_{2} \mathrm{Me}_{2}$ giving $\mathrm{Os}\left(\mathrm{SnClMeSnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (2), $\mathrm{Os}\left(\mathrm{SnClMeSnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (4), and $\mathrm{Os}\left(\mathrm{SnClMeSnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2^{-}}$ $\left(\mathrm{PPh}_{3}\right)_{2}(8)$, respectively. Treatment of compounds $\mathbf{3}$ or 7 with iodine also cleaves one α-methyl group, selectively, to give $\mathrm{Os}(\mathrm{SnI}-$ $\left.\mathrm{MeSnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{5})$, or $\mathrm{Os}\left(\mathrm{SnIMeSnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{9})$. Crystal structures for complexes $\mathbf{3}$ and 7 have been determined.

© 2006 Elsevier B.V. All rights reserved.
Keywords: Distannyl complex; Tin; Osmium; Selective α-Sn functionalisation; X-ray crystal structure

1. Introduction

Disilanyl complexes of type $\mathrm{L}_{n} \mathrm{M}-\mathrm{SiR}_{2}-\mathrm{SiR}_{3}$, when coordinatively unsaturated, have proved to be interesting precursors for silylene complexes through reversible migration of the β-silyl group to the metal [1,2]. Furthermore, in regioselective reactions the α-silicon in $\mathrm{Cp}^{*}(\mathrm{CO})_{2} \mathrm{FeSiMe}_{2^{-}}$ SiMe_{3} is bromodemethylated by reaction with BBr_{3} to form $\mathrm{Cp}^{*}(\mathrm{CO})_{2} \mathrm{FeSiBr}_{2} \mathrm{SiMe}_{3}$ [3], and the $\alpha-\mathrm{Si}-\mathrm{H}$ bonds

[^0]in $\mathrm{Cp}^{*}(\mathrm{CO})_{2} \mathrm{FeSiH}_{2} \mathrm{SiH}_{3}$ react selectively with either CCl_{4} or with dimethyldioxirane to give either $\mathrm{Cp}^{*}(\mathrm{CO})_{2} \mathrm{FeSi}-$ $\mathrm{Cl}_{2} \mathrm{SiH}_{3}$ [4] or $\mathrm{Cp}^{*}(\mathrm{CO})_{2} \mathrm{FeSi}(\mathrm{OH})_{2} \mathrm{SiH}_{3}$ [5], respectively.

This interesting chemistry prompted us to examine corresponding distannyl complexes of type $\mathrm{L}_{n} \mathrm{M}-\mathrm{SnR}_{2}-\mathrm{SnR}_{3}$. Most disilanyl complexes of type $\mathrm{L}_{n} \mathrm{M}-\mathrm{SiR}_{2}-\mathrm{SiR}_{3}$ have been prepared beginning with a readily available and appropriately substituted disilane, and introducing the metal either as an anion or through an elimination reaction [1,2]. This approach for the corresponding distannyl complexes is less favourable because of the scarcity of suitably substituted distannanes. The very few reported distannyl complexes of type $\mathrm{L}_{n} \mathrm{M}-\mathrm{SnR}_{2}-\mathrm{SnR}_{3}$ include $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PhPt}-$ $\mathrm{SnPh}_{2} \mathrm{SnPh}_{3}$ (which was neither spectroscopically nor
structurally characterised) from oxidative addition of a $\mathrm{Sn}-$ Ph bond in $\mathrm{Sn}_{2} \mathrm{Ph}_{6}$ to $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ [6] and $\mathrm{CpCp}^{*} \mathrm{ClHfSnPh}_{2} \mathrm{SnHMes}_{2}$ (which was spectroscopically but not structurally characterised) from the complex reaction of $\mathrm{CpCp}^{*} \mathrm{ClHfSnHMes} 2$ with $\mathrm{Ph}_{2} \mathrm{SnH}_{2}$ [7]. Minor products also formed in this reaction include the tristannyl complex, $\mathrm{CpCp}^{*} \mathrm{ClHfSnPh}_{2} \mathrm{SnPh}_{2} \mathrm{SnHPh}_{2}$. Complexes involving the $\mathrm{Sn}\left(\mathrm{SnMe}_{3}\right)_{3}$ ligand, which result from reaction between $\mathrm{LiSn}\left(\mathrm{SnMe}_{3}\right)_{3}$ and the appropriate metal halide, include $\mathrm{Cp}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]_{2} \mathrm{FeSn}\left(\mathrm{SnMe}_{3}\right)_{3} \quad$ [8] and $\mathrm{Mo}_{2}\left[\mathrm{Sn}\left(\mathrm{SnMe}_{3}\right)_{3}\right]_{2}\left(\mathrm{NMe}_{2}\right)_{2}$ [9]. Other distannanes substituted with transition metal fragments include the complex, $\mathrm{H}_{2} \mathrm{Sn}_{2}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{4}$, which results from the remarkable reaction between $\mathrm{HMn}(\mathrm{CO})_{5}$ and $\mathrm{Cp}_{2} \mathrm{Sn}$ [10], $\mathrm{Ph}_{2} \mathrm{Sn}_{2^{-}}$ $\left[\mathrm{FeCp}(\mathrm{CO})_{2}\right]_{4}$ produced by electrochemical reduction of $\mathrm{PhClSn}\left[\mathrm{FeCp}(\mathrm{CO})_{2}\right]_{2}$ [11] and $\mathrm{Ph}_{4} \mathrm{Sn}_{2}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}$ [12]. This last complex results from the unexpected reaction between $\mathrm{Ph}_{2} \mathrm{ClSnMn}(\mathrm{CO})_{5}$ and $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Li}$. The authors proposed that the reaction proceeds through an initial lithium-halogen exchange to produce the tin anion, $\mathrm{Li}\left[\mathrm{Ph}_{2} \mathrm{SnMn}(\mathrm{CO})_{5}\right]$, which then attacks $\mathrm{Ph}_{2} \mathrm{ClSnMn}(\mathrm{CO})_{5}$ to give the observed product. This observation suggested that reaction between LiSnR_{3} and a halostannyl complex, $\mathrm{L}_{n} \mathrm{M}-\mathrm{SnR}_{2}-\mathrm{X}$, could offer a general route to distannyl complexes, $\mathrm{L}_{n} \mathrm{M}-\mathrm{SnR}_{2}-$ SnR_{3}.

We had previously developed preparative routes to several halostannyl complexes of osmium which undergo facile substitution reactions to yield novel products, e.g., a stannatranyl complex from $\mathrm{Os}\left(\mathrm{SnI}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ (CO) $\left(\mathrm{PPh}_{3}\right)_{2}$ and triethanolamine [13], a hydroxystannyl complex, $\mathrm{Os}\left(\mathrm{SnMe}_{2}(\mathrm{OH})\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ from $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{Cl}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe} 2\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ with KOH [14], a trihydroxystannyl complex, $\mathrm{Os}\left(\mathrm{Sn}(\mathrm{OH})_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ from $\operatorname{Os}\left(\mathrm{SnI}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ with KOH [15], and the simple SnH_{3} complex, $\mathrm{Os}\left(\mathrm{SnH}_{3}\right)$ -$\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ from $\mathrm{Os}\left(\mathrm{SnI}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ (CO) $\left(\mathrm{PPh}_{3}\right)_{2}$ with NaBH_{4} [16]. Accordingly, we selected two chlorodimethylstannyl complexes, $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{Cl}\right)$ -$\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{Cl}\right) \mathrm{Cl}(\mathrm{CO})_{2^{-}}$ $\left(\mathrm{PPh}_{3}\right)_{2}$, and examined the reactivity of these two compounds towards the tin anions $\left[\mathrm{SnMe}_{3}\right]^{-}$and $\left[\mathrm{SnPh}_{3}\right]^{-}$ in the salts LiSnMe 3 and KSnPh_{3}.

In this paper we report: (i) the syntheses of the distannyl complexes $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right)_{2} \quad(\mathbf{1}), \mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (3), and $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (7) from reaction between $\mathrm{Os}\left(\mathrm{SnClMe}_{2}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Li}-$ $\mathrm{SnMe}_{3}, \mathrm{Os}\left(\mathrm{SnClMe}_{2}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{KSn}-$ Ph_{3}, OsSnClMe 2$) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (6) and KSnPh_{3}, respectively, (ii) ${ }^{119} \mathrm{Sn}$ NMR spectroscopic data for these stable osmium(II) distannyl complexes which reveal that both the $\alpha-\mathrm{Sn}$ and $\beta-\mathrm{Sn}$ atoms show well-resolved ${ }^{119} \mathrm{Sn}-{ }^{119} \mathrm{Sn}$ and ${ }^{119} \mathrm{Sn}-{ }^{117} \mathrm{Sn}$ coupling, (iii) crystal structure determinations for distannyl complexes $\mathbf{3}$ and 7, and (iv) selective functionalisation reactions at the α-tin atom in the distannyl complexes by reaction with either $\mathrm{SnMe}_{2} \mathrm{Cl}_{2}$ or I_{2}.

2. Results and discussion

2.1. The syntheses of the distannyl complexes, $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(1)$, $\left.\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})(P \mathrm{Ph})_{3}\right)_{2}(3)$, and $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (7) from reaction between $\mathrm{Os}\left(\mathrm{SnClMe} e_{2}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe} \mathrm{C}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{LiSnMe}_{3}, \mathrm{Os}\left(\mathrm{SnClMe}_{2}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(P \mathrm{Ph}_{3}\right)_{2}$ and $\mathrm{KSnPh}_{3}, \mathrm{Os}\left(\mathrm{SnClMe}_{2}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (6) and KSnPh_{3}, respectively

As illustrated in Schemes $1-3, \mathrm{LiSnMe}_{3}$ and KSnPh_{3} readily displaces chloride from the SnClMe_{2} ligands in $\mathrm{Os}\left(\mathrm{SnClMe}_{2}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Os}\left(\mathrm{SnClMe}_{2}\right)-$ $\mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{6})$ to form the distannyl complexes $\mathbf{1}, \mathbf{3}$, and 7 in good yields. All three complexes are colourless crystalline solids and show good solution stability. The IR spectra of $\mathbf{1}$ and 3 show $v(\mathrm{CO})$ bands at 1907 and $1895 \mathrm{~cm}^{-1}$, respectively, and the dicarbonyl complex 7 shows two $v(\mathrm{CO})$ bands at $2017,1958 \mathrm{~cm}^{-1}$ as expected for a cis arrangement of CO ligands. Full spectroscopic data for all the compounds appears in Section 4. The ${ }^{1} \mathrm{H}$

Scheme 1. Synthesis and reactions of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{1})$.

Scheme 2. Synthesis and reactions of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(3)$.

(6)

(7)

(9)

(8)

Scheme 3. Synthesis and reactions of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (7).

NMR spectra of $\mathbf{1}, \mathbf{3}$, and $\mathbf{7}$ all show a singlet signal for the two equivalent methyl groups on the $\alpha-\mathrm{Sn}$. Each of these signals shows satellites arising from coupling $\left(J_{\mathrm{Sn}(117 / 119) \mathrm{H}}\right)$ to both the α-Sn and the β-Sn atoms. In the case of 1 the three equivalent methyl groups on the β-Sn also appear as a singlet with satellites arising from coupling to both the α-Sn and the β-Sn atoms. Likewise, the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}, \mathbf{3}$, and $\mathbf{7}$ all show a singlet signal for the two equivalent methyl groups on the $\alpha-\mathrm{Sn}$. The signals for $\mathbf{1}$ and $\mathbf{3}$ again show satellites arising from coupling $\left(J_{\text {Sn(117/119)C }}\right)$ to both the $\alpha-\mathrm{Sn}$ and the $\beta-\mathrm{Sn}$ atoms. However, in 7, no satellites were observed for the singlet signal for the two methyl groups on the $\alpha-\mathrm{Sn}$. The three equivalent methyl groups on the $\beta-\mathrm{Sn}$ in $\mathbf{1}$ also appear as a singlet with satellites arising from coupling to both the $\alpha-\mathrm{Sn}$ and the $\beta-\mathrm{Sn}$ atoms and in this case the one-bond coupling to ${ }^{117} \mathrm{Sn}$ and ${ }^{119} \mathrm{Sn}$ is resolved.

The three compounds, $\mathbf{1}, \mathbf{3}$, and $\mathbf{7}$, each show a singlet in the ${ }^{31} \mathrm{P}$ NMR spectrum which is consistent with a trans arrangement of the triphenylphosphine ligands, subsequently confirmed by crystal structure determination (see below). Each singlet in the ${ }^{31} \mathrm{P}$ NMR spectrum shows Sn satellites, resulting from coupling with the $\alpha-\operatorname{Sn}$ for $\mathbf{1}, \mathbf{3}$, and 7 and with the $\beta-\mathrm{Sn}$ as well for 1.

The ${ }^{119}$ Sn NMR spectra of $\mathbf{1 , 3}$, and $\mathbf{7}$ are quite complex but detailed analysis is especially revealing of the $\mathrm{Os}-\mathrm{Sn}-$ Sn linkage. Each compound will be discussed separately. The ${ }^{119} \mathrm{Sn}$ NMR spectrum of $\mathbf{1}$ is depicted in Fig. 1 and it can be seen that the $\alpha-\mathrm{Sn}$ resonance occurs at -283.3 ppm and the β-Sn resonance occurs at -170.8 ppm . This pattern of the metal-bound tin signal appearing at higher field relative to the $\beta-\mathrm{Sn}$ signal is common to the organo-substituted distannyl complexes $\mathbf{1 , 3}$, and 7 , but is reversed for all the α-halo-substituted complexes, $\mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{8}$, and $\mathbf{9}$, reported in this paper (see below). In 1, both the $\alpha-\mathrm{Sn}$ and $\beta-\mathrm{Sn}$ resonances at -283.3 and -170.8 ppm , respectively, are observed as triplets through coupling to phosphorus (see Fig. 1). The two-bond coupling of the $\alpha-\mathrm{Sn}$ is 88 Hz and the three-bond coupling of
the $\beta-\mathrm{Sn}$ is 9 Hz . The values and relative magnitudes of these two coupling constants are typical of all the distannyl compounds reported in this paper. Each of these triplets show two sets of satellites arising through one bond $\mathrm{Sn}-$ Sn coupling to the adjacent tin atom, when present as either the ${ }^{117} \mathrm{Sn}$ isotope or the ${ }^{119} \mathrm{Sn}$ isotope. Inspection of Fig. 1 indicates that the satellite signals are not symmetrically distributed about the central triplet signal, a feature most clearly seen in trace (B). This is because the chemical shift of the ${ }^{119} \mathrm{Sn}$ resonance changes according to whether the adjacent isotope is ${ }^{117} \mathrm{Sn}$ or ${ }^{119} \mathrm{Sn}$. The assignments of the appropriate pairs of satellite triplets, for determination of the coupling constants, are based upon the requirement that the ratio $J_{\operatorname{Sn}(119) \operatorname{Sn}(119)} /$ $J_{\mathrm{Sn}(119) \mathrm{Sn}(117)}$ is the same as ratio of the magnetogyric ratios for ${ }^{119} \mathrm{Sn} /{ }^{117} \mathrm{Sn}$, that is 1.0462 [17a]. The coupling constants so measured for the $\alpha-\mathrm{Sn}$ in complex 1 are ${ }^{1} J_{\mathrm{Sn}(117) \operatorname{Sn}(119)}=$ $2333,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=2442 \mathrm{~Hz}$ and for the $\beta-\mathrm{Sn}$ are ${ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=2332,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=2441 \mathrm{~Hz}$. The corresponding one-bond coupling constants, determined in the same manner, for all the remaining distannyl complexes reported in this paper are to be found in Section 4. The $\mathrm{Sn}-\mathrm{Sn}$ coupling constants measured for $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{Sn}-\right.$ $\left.\mathrm{Me}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{1})$ are far less than that reported for $\mathrm{Me}_{3} \mathrm{SnSnMe}_{3} \quad\left({ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=4404 \mathrm{~Hz}\right)$ [17a]. We are aware of only two other transition metal distannyl complexes where the one bond $\mathrm{Sn}-\mathrm{Sn}$ coupling constants have been measured and these are CpCp ${ }^{*} \mathrm{ClHfSnPh}_{2} \mathrm{SnHMes}_{2}$ for which ${ }^{1} J_{\mathrm{Sn}(117 / 119) \mathrm{Sn}(119)}$ is $185 \mathrm{~Hz}[7]$ and $\mathrm{Cp}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]_{2} \mathrm{FeSn}\left(\mathrm{SnMe}_{3}\right)_{3}[17 \mathrm{~b}]$ for which a value near to zero was measured by a heteronuclear dou-ble-resonance experiment. It is clear that the presence of a transition metal and associated ligands as a substituent on a ditin fragment has the effect of reducing the one bond $\mathrm{Sn}-$ Sn coupling constant. The corresponding values observed for complexes $\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{8}$, and $\mathbf{9}$ are less than those for complex 1. For example, replacement of the β-trimethylstannyl group in $\mathbf{1}$ with the β-triphenylstannyl group in 3 reduces the values to ${ }^{1} J_{\operatorname{Sn}(117) \operatorname{Sn}(119)}=1074,{ }^{1} J_{\operatorname{Sn}(119) \operatorname{Sn}(119)}$ $=1119 \mathrm{~Hz}$ (measured for the $\alpha-\mathrm{Sn})$ and to ${ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=$ $1061,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=1120 \mathrm{~Hz}$ (measured for the $\beta-\mathrm{Sn}$). One bond $\mathrm{Sn}-\mathrm{Sn}$ coupling has been correlated with the Taft σ^{*} values of the substituents on tin [17b] and with the s-overlap integral for the $\mathrm{Sn}-\mathrm{Sn}$ bond [17c]. One piece of evidence suggesting that electronegative substituents increase the $\mathrm{Sn}-\mathrm{Sn}$ coupling constant is that the value for $\mathrm{Bu}_{2^{-}}$ $(\mathrm{OAc}) \mathrm{SnSnBu}_{2}(\mathrm{OAc})(14,980 \mathrm{~Hz})$ is much greater than the value for $\mathrm{Bu}_{3} \mathrm{SnSnBu}_{3}(2,748 \mathrm{~Hz})$ [17b]. However, the coordination number of tin in $\mathrm{Bu}_{2}(\mathrm{OAc}) \mathrm{SnSnBu}_{2}(\mathrm{OAc})$ is 5 and direct comparisons should be made with caution. The lowest values measured in this work were for complex (5) (see below) where the α - Sn has an iodo-substituent, ${ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=525, \quad{ }^{1} J_{\mathrm{Sn}(119) \operatorname{Sn}(119)}=531 \mathrm{~Hz} \quad$ (measured for the $\alpha-\mathrm{Sn})$ and to ${ }^{1} J_{\mathrm{Sn}(117) \operatorname{Sn}(119)}=522,{ }^{1} J_{\mathrm{Sn}(119) \operatorname{Sn}(119)}=$ 537 Hz (measured for the $\beta-\mathrm{Sn}$). We cannot explain this unexpected reduction in coupling constant associated with halogen substitution of the α-tin and further measurements

Fig. 1. The ${ }^{119} \mathrm{Sn}$ NMR spectrum of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{1})$: the α - Sn resonance with satellites is shown in trace (A) and the β-Sn resonance with satellites is shown in trace (B).
on a greater range of compounds in conjunction with theoretical studies will be required to rationalise these observations.

> 2.2. The crystal structures of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)$ $\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(3)$, and $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)$ $\mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7)$

Further confirmation of the presence of distannyl ligands in these complexes was provided by crystal structure determinations of $\mathbf{3}$ and $\mathbf{7}$. The molecular geometries of $\mathbf{3}$ and 7 are shown in Figs. 2 and 3, respectively, and crystal data pertaining to these structures are presented in Table 1. Selected bond lengths and angles for $\mathbf{3}$ and $\mathbf{7}$ are
collected in Tables 2 and 3, respectively. In the structure of $\mathbf{3}$ the overall geometry about osmium can be described as octahedral with the two triphenylphosphine ligands arranged mutually trans. The dimethyldithiocarbamate ligand is reasonably symmetrically attached ($\mathrm{Os}-\mathrm{S}(1)$, $2.4662(15)$ and $\mathrm{Os}-\mathrm{S}(2), 2.4772(15) \AA)$. Related osmium stannyl, dimethyldithiocarbamate complexes also show symmetrical attachment of this bidentate ligand [15]. The Os-Sn(1) distance in $\mathbf{3}$ is $2.6928(5) \AA$ (the average for 33 observations listed in the CCDC is $2.7037 \AA$ with an SD of $0.0586 \AA$) which is longer than the value found for the corresponding SnMe_{3} complex, $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)\left(\mathrm{K}^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(2.6616(13) \AA)[15]$ but reasonable in view of the increased steric demands of the distannyl ligand.

Fig. 2. Molecular geometry of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})-$ $\left(\mathrm{PPh}_{3}\right)_{2}(3)$.

Fig. 3. Molecular geometry of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (7).

Further support for the idea that replacement of a methyl group on the trimethylstannyl ligand by a triphenylstannyl group introduces considerable steric pressures is provided by the large $\mathrm{Os}-\mathrm{Sn}(1)-\mathrm{Sn}(2)$ angle of $129.816(18)^{\circ}$. The $\operatorname{Sn}(1)-\operatorname{Sn}(2)$ distance in $\mathbf{3}$ is unremarkable at $2.8236(6) \AA$. It is probably not very meaningful to compare this value with the average of 281 observations of all $\mathrm{Sn}-\mathrm{Sn}$ distances listed in the CCDC ($2.8708 \AA$ with an SD of $0.0950 \AA$) since this compilation includes many examples which are complex tin cluster compounds including tin Zintl ions. A more meaningful comparison is with the $\mathrm{Sn}-\mathrm{Sn}$ distances in simple organo-polystannanes, e.g., $\mathrm{Ph}_{6} \mathrm{Sn}_{2}(2.770(4) \AA$ [18]) and the cyclic hexamer of diphenyltin (2.78 \AA [19]).

The observed distance in $\mathbf{3}$ is only slightly longer than these distances and in fact lies between these values and the measured distance in $\mathrm{Br}_{2} \mathrm{Sn}_{2}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{4}(2.885(1) \AA[10 \mathrm{~b}])$. The two $\alpha-\mathrm{Sn}-\mathrm{CH}_{3}$ distances at 2.188(7) and 2.198(7) \AA are similar to those reported for $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}[15]$ and are right at the long end of the range of $\mathrm{Sn}-\mathrm{CH}_{3}$ distances recorded in the CCDC (1569 observations, average $2.1367 \AA$ with an SD of $0.0267 \AA$). This may be related to the unusual reactivity associated with these methyl groups to be discussed below.

In the structure of 7 the overall geometry about osmium is close to regular octahedral with the two triphenylphosphine ligands arranged mutually trans and the two CO ligands mutually cis. The $\mathrm{Os}-\mathrm{Sn}(1)$ distance in 7 is $2.7925(2) \AA$ is significantly longer than the corresponding distance in $\mathbf{3}$ and this no doubt reflects the trans influence of the CO ligand. The CO ligand trans to the distannyl ligand is associated with a longer $\mathrm{Os}-\mathrm{CO}$ bond (1.928(3) Å) than the CO ligand trans to chloride (1.882(3) \AA) in turn reflecting the trans influence of the distannyl ligand. The $\mathrm{Os}-\operatorname{Sn}(1)-\operatorname{Sn}(2)$ angle in 7 is $128.496(8)^{\circ}$, very close to the value found in 3 . The $\operatorname{Sn}(1)-\operatorname{Sn}(2)$ distance in 7 is unremarkable at $2.8367(2) \AA$ and again is very close to the value found in 3. Clearly, changing the accompanying ligands in the two distannyl complexes, 3 and 7, makes very little difference to the geometrical parameters of the Os-distannyl moiety. Once again the two $\alpha-\mathrm{Sn}-\mathrm{CH}_{3}$ distances at 2.169(3) and $2.171(3) \AA$ are at the long end of the range of $\mathrm{Sn}-\mathrm{CH}_{3}$ distances recorded in the CCDC (1569 observations, average $2.1367 \AA$ with an SD of $0.0267 \AA$) but the lengthening of these bonds is not as pronounced as for 3 .
2.3. Selective α-Sn functionalisation of distannyl complexes
1, 3, and 7 with $\mathrm{SnCl}_{2} \mathrm{Me}_{2}$ giving $\mathrm{Os}(\mathrm{SnClMeSnMe} 3)$ -
$\left(\kappa^{2}-S_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(2), \mathrm{Os}(\mathrm{SnClMeSnPh} 3)-$
$\left(\kappa^{2}-S_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(P \mathrm{Ph}_{3}\right)_{2}(4)$, and
$\mathrm{Os}(\mathrm{SnClMeSnPh} 3) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\boldsymbol{8})$, respectively

It is well established that simple stannyl complexes, $\mathrm{L}_{n} \mathrm{M}-\mathrm{SnR}_{3}$, readily undergo exchange reactions with halosubstituted stannanes to form $\mathrm{L}_{n} \mathrm{M}-\operatorname{SnR}_{2} \mathrm{X}, \mathrm{L}_{n} \mathrm{M}-\operatorname{SnRX}_{2}$, or $\mathrm{L}_{n} \mathrm{M}-\mathrm{SnX}_{3}$, depending upon the particular halo-stannane and the particular reaction conditions [20,15]. Accordingly reaction between the distannyl complexes $\mathbf{1}, \mathbf{3}$, and 7 , and $\mathrm{SnCl}_{2} \mathrm{Me}_{2}$ were investigated. As depicted in Schemes 13 these reactions proceeded cleanly and in high yield to give exclusively the reaction products from exchange at the $\alpha-\mathrm{Sn}$ atom, $\mathrm{Os}(\mathrm{SnClMeSnMe} 3)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \quad$ (2), $\mathrm{Os}\left(\mathrm{SnClMeSnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (4), and Os$\left.\left(\mathrm{SnClMeSnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right)_{2}(\mathbf{8})$. That the integrity of the $\mathrm{Sn}-\mathrm{Sn}$ bond retained in all of these complexes is clear from the ${ }^{1} \mathrm{H}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra of $\mathbf{2}, 4$, and $\mathbf{8}$. In the ${ }^{1} \mathrm{H}$ NMR spectra the methyl signal on the α-Sn shows both two- and three-bond coupling to the $\alpha-\mathrm{Sn}$ and $\beta-\mathrm{Sn}$ atoms, respectively. In the ${ }^{119} \mathrm{Sn}$ NMR spectra of these complexes separate triplet signals are seen for both the $\alpha-\mathrm{Sn}$

Table 1
Data collection and processing parameters for $\mathbf{3}$ and 7

	3-2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7
Formula	$\mathrm{C}_{62} \mathrm{H}_{61} \mathrm{Cl}_{4} \mathrm{NOOsP}_{2} \mathrm{~S}_{2} \mathrm{Sn}_{2}$	$\mathrm{C}_{58} \mathrm{H}_{51} \mathrm{ClO}_{2} \mathrm{OsP}_{2} \mathrm{Sn}_{2}$
Molecular weight	1531.56	1304.96
Crystal system	Monoclinic	Triclinic
Space group	C2/c	$P \overline{1}$
$a(\mathrm{~A})$	36.2935(4)	12.1286(3)
$b(\AA)$	15.0172(1)	13.5793(4)
$c(\mathrm{~A})$	24.2814(1)	17.1334(4)
$\alpha\left({ }^{\circ}\right)$		93.637(1)
$\beta\left({ }^{\circ}\right)$	109.611(1)	103.200(1)
$\gamma\left({ }^{\circ}\right)$		107.759(1)
$V\left(\AA^{3}\right)$	12466.34(17)	2589.23(12)
Z	8	2
$D_{\text {(calc) }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.632	1.674
$F(000)$	6032	1276
$\mu\left(\mathrm{mm}^{-1}\right)$	3.16	3.56
Crystal size (mm)	$0.30 \times 0.28 \times 0.16$	$0.38 \times 0.16 \times 0.14$
$\theta\left(\right.$ min-max) $\left(^{\circ}\right.$)	1.6-26.4	1.6-26.1
Reflections collected	34551	24109
Independent reflections ($R_{\text {int }}$)	12666 (0.0266)	10117 (0.0213)
T (min-max)	0.451-0.632	0.345-0.636
Goodness of fit on F^{2}	1.207	1.066
R (observed data)	$R_{1}=0.0425, w R_{2}=0.1075$	$R_{1}=0.0192, w R_{2}=0.0454$
R (all data)	$R_{1}=0.0509, w R_{2}=0.1113$	$R_{1}=0.0228, w R_{2}=0.0470$
Diff. map (min-max) (e \AA^{-3})	-1.15 and +2.67	-0.74 and +0.73

$R=\sum \|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right| / \sum \mid F_{\mathrm{o}}, w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \sum\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$.
and $\beta-\mathrm{Sn}$ atoms and one-bond $\mathrm{Sn}-\mathrm{Sn}$ coupling is observed for each signal. Replacement of a methyl group on the α Sn by a chloride in each case results in a reduction of the $\mathrm{Sn}-\mathrm{Sn}$ coupling constants (see discussion in Section 2.3). A feature of the ${ }^{31} \mathrm{P}$ NMR spectrum of complex $\mathbf{8}$ is that two resonances are observed $(-10.7$ and $-10.5 \mathrm{ppm})$ indicating that the two phosphorus atoms are slightly inequivalent. This same feature is observed in the ${ }^{31} \mathrm{P}$ NMR spectra of complexes 5 and 9 to be described below. In principle, in complexes $\mathbf{2}, \mathbf{4}, 5,8$, and $\mathbf{9}$ where a chiral tin centre is directly bound to the osmium atom, the two phosphorus atoms will be inequivalent. However, the difference in the chemical shift values may be very small and is not observed in complexes 2 and 4.

2.4. Selective α-Sn functionalisation of distannyl complexes

3, and 7 with iodine to give $\mathrm{Os}(\mathrm{SnIMeSnPh} 3)$ -
$\left(\kappa^{2}-S_{2} C N M e_{2}\right)(C O)\left(P P h_{3}\right)_{2}(5)$, or
$\mathrm{Os}(\mathrm{SnIMeSnPh} 33) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(9)$
In view of the facility with which $\mathrm{Sn}-\mathrm{ph}$ nyl bonds are usually cleaved by reaction with iodine [17a], the two complexes bearing phenyl substituents on the β-Sn atom, complexes 3 and 7 were treated with iodine in the hope of functionalising the $\beta-\mathrm{Sn}$ atom. Of course, a possible competing reaction would be cleavage of the $\mathrm{Sn}-\mathrm{Sn}$ bond and this has been demonstrated to occur when $\mathrm{Cp}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]_{2}-$ $\mathrm{FeSn}\left(\mathrm{SnMe}_{3}\right)_{3}$ is treated with iodine [21]. In fact, complexes 3 and 7 react cleanly with one equivalent of iodine at low temperature to form again the products from cleavage of a methyl group from the α - Sn atom (see Schemes 2
and 3), $\mathrm{Os}\left(\mathrm{SnIMeSnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \quad$ (5), and $\mathrm{Os}(\mathrm{SnIMeSnPh} 3) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(9)$. These reactions testify to both the unusually high reactivity of the $\mathrm{Sn}-$ methyl bonds on the α-Sn atom and to the robustness of the $\mathrm{Sn}-\mathrm{Sn}$ bond. Once again the ${ }^{1} \mathrm{H}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra of $\mathbf{5}$ and 9 indicate the $\mathrm{Sn}-\mathrm{Sn}$ bond is retained in both complexes. Replacement of a methyl group on the α-Sn by an iodide in each case results in a further reduction of the $\mathrm{Sn}-\mathrm{Sn}$ coupling constants relative to the corresponding chloride derivatives. The ${ }^{31} \mathrm{P}$ NMR spectrum of complexes $\mathbf{5}$ and $\mathbf{9}$ again shows two resonances (2.3 and 3.2 ppm for $\mathbf{5}$, -10.2 and -10.4 ppm for 9) indicating that the two phosphorus atoms (P_{a} and P_{b}) are slightly inequivalent as discussed above.

3. Conclusions

It has been demonstrated that a possibly general route to distannyl complexes involves reaction between an appropriate complex with a chloro-substituted stannyl ligand, $\mathrm{L}_{n} \mathrm{M}-\mathrm{SnR}_{2} \mathrm{Cl}$, and a tri-organo tin anion, SnR_{3}^{-}. Three distannyl complexes prepared in this way, $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{1}), \mathrm{Os}\left(\mathrm{SnMe}_{2}-\right.$ $\left.\mathrm{SnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(3)$, and $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)-$ $\mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7)$, have been thoroughly characterised by multinuclear NMR studies and for 3 and 7 by X-ray crystallography. In the ${ }^{119} \mathrm{Sn}$ NMR spectra of these stable osmium(II) distannyl complexes both the $\alpha-\mathrm{Sn}$ and $\beta-\mathrm{Sn}$ atoms show well-resolved one-bond ${ }^{119} \mathrm{Sn}-{ }^{119} \mathrm{Sn}$ and ${ }^{119} \mathrm{Sn}-{ }^{117} \mathrm{Sn}$ coupling. These coupling constants vary widely in magnitude but are always less than the corresponding

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 3

Bond lengths	
Os-C(1)	$1.862(6)$
Os-P(2)	$2.3699(15)$
Os-P(1)	$2.3771(15)$
Os-S(1)	$2.4662(15)$
Os-S(2)	$2.4772(15)$
Os-Sn(1)	$2.6928(5)$
Sn(1)-C(5)	$2.188(7)$
Sn(1)-C(6)	$2.198(7)$
$\mathrm{Sn}(1)-\mathrm{Sn}(2)$	$2.8236(6)$
$\mathrm{S}(1)-\mathrm{C}(2)$	$1.719(6)$
$\mathrm{S}(2)-\mathrm{C}(2)$	$1.711(7)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.339(8)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.447(10)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.469(9)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.161(7)$
Bond angles	
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{P}(2)$	$90.09(19)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{P}(1)$	$88.46(19)$
$\mathrm{P}(2)-\mathrm{Os}-\mathrm{P}(1)$	$173.15(5)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{S}(1)$	$177.4(2)$
$\mathrm{P}(2)-\mathrm{Os}-\mathrm{S}(1)$	$90.39(5)$
$\mathrm{P}(1)-\mathrm{Os}-\mathrm{S}(1)$	$90.76(5)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{S}(2)$	$106.5(2)$
$\mathrm{P}(2)-\mathrm{Os}-\mathrm{S}(2)$	$86.99(5)$
$\mathrm{P}(1)-\mathrm{Os}-\mathrm{S}(2)$	$87.00(5)$
$\mathrm{S}(1)-\mathrm{Os}-\mathrm{S}(2)$	$70.94(5)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{Sn}(1)$	$98.29(19)$
$\mathrm{P}(2)-\mathrm{Os}-\mathrm{Sn}(1)$	$93.55(4)$
$\mathrm{P}(1)-\mathrm{Os}-\mathrm{Sn}(1)$	$93.29(4)$
$\mathrm{S}(1)-\mathrm{O}-\mathrm{Sn}(1)$	$84.26(4)$
$\mathrm{S}(2)-\mathrm{O}-\mathrm{Sn}(1)$	$155.19(4)$
$\mathrm{C}(5)-\mathrm{Sn}(1)-\mathrm{C}(6)$	$93.7(3)$
$\mathrm{C}(5)-\mathrm{Sn}(1)-\mathrm{Os}$	$114.74(18)$
$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{Os}$	$116.4(2)$
$\mathrm{C}(5)-\mathrm{Sn}(1)-\mathrm{Sn}(2)$	$100.1(2)$
$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{Sn}(2)$	$95.0(2)$
$\mathrm{Os}-\mathrm{Sn}(1)-\mathrm{Sn}(2)$	$129.816(18)$

coupling constants for simple hexa-organoditin compounds. The methyl groups on the α-Sn atoms in each of the three distannyl complexes, $\mathbf{1}, \mathbf{3}$, and $\mathbf{7}$, are unusually reactive and selective functionalisation at the $\alpha-\mathrm{Sn}$ atom by reaction with $\mathrm{SnCl}_{2} \mathrm{Me}_{2}$ gives $\mathrm{Os}\left(\mathrm{SnClMeSnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})-$ $\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{2}), \mathrm{Os}\left(\mathrm{SnClMeSnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (4), and $\mathrm{Os}\left(\mathrm{SnClMeSnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (8), respectively. Likewise, treatment of compounds 3 or 7 with iodine also cleaves one α-methyl group, selectively, to give $\mathrm{Os}\left(\mathrm{SnIMeSnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{5})$, or $\mathrm{Os}(\mathrm{SnI}-$ $\mathrm{MeSnPh})_{3} \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{9})$.

4. Experimental

4.1. General procedures and instruments

Standard laboratory procedures were followed as have been described previously [22]. The compounds $\mathrm{Os}(\mathrm{SnCl}-$ $\left.\mathrm{Me}_{2}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ [14], $\mathrm{Os}\left(\mathrm{SnMe}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2^{-}}$

Table 3
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 7

Bond lengths	
Os-C(2)	$1.882(3)$
Os-C(1)	$1.928(3)$
Os-P(1)	$2.4113(6)$
Os-P(2)	$2.4156(6)$
Os-Cl	$2.4565(6)$
Os-Sn(1)	$2.7925(2)$
Sn(1)-C(3)	$2.169(3)$
Sn(1)-C(4)	$2.171(3)$
Sn(1)-Sn(2)	$2.8367(2)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.138(3)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.134(3)$
Bond angles	
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{C}(1)$	$94.77(11)$
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(1)$	$91.26(8)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{P}(1)$	$85.74(7)$
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(2)$	$91.66(8)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{P}(2)$	$86.82(7)$
$\mathrm{P}(1)-\mathrm{Os}-\mathrm{P}(2)$	$172.21(2)$
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{Cl}$	$170.69(8)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{Cl}$	$94.54(8)$
$\mathrm{P}(1)-\mathrm{Os}-\mathrm{Cl}$	$89.69(2)$
$\mathrm{P}(2)-\mathrm{Os}-\mathrm{Cl}$	$88.60(2)$
$\mathrm{C}(2)-\mathrm{Os}-\mathrm{Sn}(1)$	$77.37(8)$
$\mathrm{C}(1)-\mathrm{Os}-\mathrm{Sn}(1)$	$172.09(7)$
$\mathrm{P}(1)-\mathrm{Os}-\mathrm{Sn}(1)$	$93.524(16)$
$\mathrm{P}(2)-\mathrm{Os}-\mathrm{Sn}(1)$	$94.160(16)$
$\mathrm{Cl}-\mathrm{Os}-\mathrm{Sn}(1)$	$93.330(16)$
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{C}(4)$	$102.38(11)$
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{Os}$	$112.46(8)$
$\mathrm{C}(4)-\mathrm{Sn}(1)-\mathrm{Os}$	$114.10(8)$
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{Sn}(2)$	$98.32(8)$
$\mathrm{C}(4)-\mathrm{Sn}(1)-\mathrm{Sn}(2)$	$97.16(8)$
$\mathrm{Os}-\mathrm{Sn}(1)-\mathrm{Sn}(2)$	$128.496(8)$

$\left(\mathrm{PPh}_{3}\right)_{2}$ [23], LiSnMe_{3} [24], and KSnPh_{3} [25] were prepared according to the literature methods.

Infrared spectra ($4000-400 \mathrm{~cm}^{-1}$) were recorded as Nujol mulls between KBr plates on a Perkin Elmer Paragon 1000 spectrometer. NMR spectra were obtained on a Bruker DRX 400 at $25^{\circ} \mathrm{C},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{119} \mathrm{Sn}$, and ${ }^{31} \mathrm{P}$ NMR spectra were obtained operating at $400.1\left({ }^{1} \mathrm{H}\right), 100.6$ $\left({ }^{13} \mathrm{C}\right)$, $149.2\left({ }^{119} \mathrm{Sn}\right)$, and $162.0\left({ }^{31} \mathrm{P}\right) \mathrm{MHz}$, respectively. Resonances are quoted in ppm and ${ }^{1} \mathrm{H}$ NMR spectra referenced to either tetramethylsilane (0.00 ppm) or the proteoimpurity in the solvent (7.25 ppm for CHCl_{3}). ${ }^{13} \mathrm{C}$ NMR spectra were referenced to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm}),{ }^{119} \mathrm{Sn}$ NMR spectra to $\mathrm{SnMe}_{4}(0.00 \mathrm{ppm})$, and ${ }^{31} \mathrm{P}$ NMR spectra to 85% orthophosphoric acid (0.00 ppm) as an external standard. Elemental analyses were obtained from the Microanalytical Laboratory, University of Otago.

4.2. Preparation of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ $(\mathrm{CO})\left(P \mathrm{Ph}_{3}\right)_{2}(1)$

To a stirred pale yellow suspension of $\mathrm{Os}\left(\mathrm{SnClMe}_{2}\right)$ -$\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(0.362 \mathrm{~g}, 0.346 \mathrm{mmol})$ in thf $(5 \mathrm{~mL})$ was added a $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of LiSnMe_{3} in
thf ($13.8 \mathrm{~mL}, 1.383 \mathrm{mmol}$). After stirring at room temperature for ca. 10 min , the initial green suspension had cleared and become green/orange in colour. Stirring was continued at room temperature for a further 50 min after which time the volume of the solution was reduced to ca. 10 mL , in vacuo. $\mathrm{EtOH}(30 \mathrm{~mL})$ was added and further concentration of the now green solution gave a colourless precipitate. The solid was collected and recrystallised from toluene/heptane by slow solvent diffusion at low temperature. This afforded pure $\mathbf{1}$ as colourless crystals (yield $0.312 \mathrm{~g}, 77 \%$). Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{NOOsP}_{2} \mathrm{~S}_{2} \mathrm{Sn}_{2} \cdot 0.5 \mathrm{C}_{7} \mathrm{H}_{8}$: C, $47.69 ; \mathrm{H}$, 4.54; N, 1.15. Found: C, 47.64; H, 4.91; N, 1.17\%. IR $\left(\mathrm{cm}^{-1}\right): 1907 v(\mathrm{CO}) ; 1521\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, δ): 0.12 (s with Sn satellites, $6 \mathrm{H},{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=33.2$, ${ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=25.0 \mathrm{~Hz}, \mathrm{Sn} M e_{2} \mathrm{SnMe}_{3}$), 0.47 (s with Sn satellites, $9 \mathrm{H},{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=40.0,{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=8.8 \mathrm{~Hz}$, $\mathrm{SnMe}_{2} \mathrm{Sn} M e_{3}$), 1.61 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{S}_{2} \mathrm{CNMe} e_{2}$), 1.78 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{S}_{2} \mathrm{CN} M e_{2}\right), 7.04\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.97\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta\right)$: $-9.2\left(\mathrm{~s}\right.$ with Sn satellites, ${ }^{1} J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=$ $\left.125.8, \quad{ }^{2} J_{\mathrm{Sn}(117 / 199 \mathrm{C}}=52.9 \mathrm{~Hz}, \quad \mathrm{Sn}_{\mathrm{Me}}^{2} \mathrm{SnMe}_{3}\right), \quad-8.6$ (s with Sn satellites, ${ }^{1} J_{\mathrm{Sn}(119) \mathrm{C}}=166.1,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{C}}=159.3$, $\left.{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=30.1 \mathrm{~Hz}, \mathrm{SnMe}_{2} \mathrm{Sn} M e_{3}\right), 35.6\left(\mathrm{~s}, \mathrm{~S}_{2} \mathrm{CN} M e_{2}\right)$, $36.2\left(\mathrm{~s}, \mathrm{~S}_{2} \mathrm{CN} M e_{2}\right), 127.6\left(\mathrm{t}^{\prime}[22],{ }^{2,4} J_{\mathrm{PC}}=8.0 \mathrm{~Hz}, o-\mathrm{PPh}_{3}\right)$, $129.5\left(\mathrm{~s}, p-\mathrm{PPh}_{3}\right), 135.2\left(\mathrm{t}^{\prime},{ }^{3,5} J_{\mathrm{PC}}=9.1 \mathrm{~Hz}, m-\mathrm{PPh}_{3}\right)$, $189.2\left(\mathrm{t},{ }^{2} J_{\mathrm{PC}}=12.1 ; \mathrm{Hz}, \quad \mathrm{CO}\right), 211.2\left(\mathrm{~s}, \mathrm{~S}_{2} C \mathrm{NMe}_{2}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}, \delta\right)$: 7.2 (s with Sn satellites, $\left.{ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}}=87.5,{ }^{2} J_{\mathrm{Sn}(117) \mathrm{P}}=84.7,{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=7.8 \mathrm{~Hz}\right)$. ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{66}, \delta\right)$: -170.8 (t with Sn satellites, ${ }^{3} J_{\mathrm{Sn}(119) \mathrm{P}}=9,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=2332,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=$ $2441 \mathrm{~Hz}, \mathrm{SnMe}_{2} \mathrm{SnMe}_{3}$), -283.3 (t with Sn satellites, ${ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}}=88, \quad{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=2333, \quad{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=$ $2442 \mathrm{~Hz}, \mathrm{SnMe}_{2} \mathrm{SnMe}_{3}$).

4.3. Preparation of $\mathrm{Os}\left(\mathrm{SnClMeSnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ (CO) $\left(P \mathrm{Ph}_{3}\right)_{2}(2)$

$\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnMe}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{1})(0.081 \mathrm{~g}$, $0.069 \mathrm{mmol})$ and $\mathrm{SnMe}_{2} \mathrm{Cl}_{2}(0.015 \mathrm{~g}, 0.069 \mathrm{mmol})$ were codissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting pale yellow solution stirred at room temperature for ca. 16 h . All volatiles were removed in vacuo and the residual pale yellow solution recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ to afford pure 2 as similarly coloured microcrystals (yield $0.067 \mathrm{~g}, 98 \%$). Anal. Calc. for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{ClNOOsP}_{2} \mathrm{~S}_{2} \mathrm{Sn}_{2}$: C, 44.19; H, 4.05; N, 1.17. Found: C, 44.27; H, 3.37; N, 1.25\%. IR $\left(\mathrm{cm}^{-1}\right): 1908 v(\mathrm{CO}) ; 1530\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, δ): -0.01 (s with Sn satellites, $3 \mathrm{H},{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=27.2$, ${ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=18.8 \mathrm{~Hz}, \mathrm{Sn} M e \mathrm{ClSnMe} 3$), 0.16 (s with Sn satellites, $\quad 9 \mathrm{H}, \quad{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=45.6, \quad{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=$ $12.4 \mathrm{~Hz}, \mathrm{SnMeClSn} M e_{3}$), $2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}_{2} \mathrm{CNMe} e^{2}\right), 2.27$ (s, $\left.3 \mathrm{H}, \mathrm{S}_{2} \mathrm{CN} M e_{2}\right), 7.36\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.59\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right)$, $7.78\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right):-8.0(\mathrm{~s}, \mathrm{Sn}$ satellites not observed, $\mathrm{SnMeClSn} M e_{3}$), 0.8 (s, Sn satellites not observed, $\mathrm{Sn} M e \mathrm{ClSnMe} 3$), 35.6 ($\mathrm{s}, \mathrm{S}_{2} \mathrm{CN} M e_{2}$), 36.2 (s, $\mathrm{S}_{2} \mathrm{CNMe} \mathrm{e}_{2}$, 127.7, 128.1, 129.8, 130.2, 134.7, 135.1, $\left(\mathrm{PPh}_{3}\right), 187.6$ (s, CO), 209.7 (s, $\mathrm{S}_{2} C \mathrm{NMe}_{2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\quad\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}, \quad \delta\right): 4.6 \quad\left(\mathrm{~s}, \quad{ }^{2} \mathrm{~J}_{\mathrm{Sn}(117 / 119) \mathrm{P}}=76.7\right.$,
$\left.{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=10.9 \mathrm{~Hz}\right) .{ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}\right.$, δ): 11.0 (t with Sn satellites, ${ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}}=78,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}$ $=1906,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=2002 \mathrm{~Hz}, \mathrm{Sn}_{\mathrm{MeClSnPh}}^{3}$), -116.4 (t with Sn satellites, ${ }^{3} J_{\mathrm{Sn}(119) \mathrm{P}}=11,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=1913$, $\left.{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=2002 \mathrm{~Hz}, \mathrm{SnMeClSnPh} 3\right)$.

4.4. Preparation of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(3)$

To a stirred pale yellow suspension of $\mathrm{Os}\left(\mathrm{ClSnMe}_{2}\right)$ -$\left(\mathrm{K}^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ in thf $(10 \mathrm{~mL})$ was added a $0.13 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of KSnPh_{3} in thf $(8.9 \mathrm{~mL}$, $1.12 \mathrm{mmol})$. After continued stirring at room temperature for ca. 2 h , a slightly cloudy yellow solution resulted. The volume of the reaction mixture was reduced to ca. 10 mL , in vacuo, and EtOH (30 mL) added. Further concentration afforded a pale coloured precipitate, which was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ to afford pure $\mathbf{3}$ as a pale yellow microcrystalline solid (yield $0.343 \mathrm{~g}, 65 \%$). Crystals suitable for single crystal X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ by slow vapour diffusion at room temperature and proved to contain 2 molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of solvation. However, the bulk sample after vacuum drying returned elemental analyses figures appropriate for only partial solvation. Anal. Calc. for $\mathrm{C}_{60} \mathrm{H}_{57} \mathrm{NOOsP}_{2} \mathrm{~S}_{2}-$ $\mathrm{Sn}_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $51.74 ; \mathrm{H}, 4.16 ; \mathrm{N}, 1.00 \%$. Found: C, $51.39 ; \mathrm{H}, 4.15 ; \mathrm{N}, 1.03 \%$. IR $\left(\mathrm{cm}^{-1}\right): 1911,1892$ (1895 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution) $v(\mathrm{CO}) ; 1524\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right):-0.21$ (s with Sn satellites, $6 \mathrm{H},{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=$ $\left.32.4, \quad{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=27.6 \mathrm{~Hz}, \quad \operatorname{Sn} M e_{2} \mathrm{SnPh}_{3}\right), \quad 2.00 \quad(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{S}_{2} \mathrm{CN} M e_{2}$), $2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}_{2} \mathrm{CN} M e_{2}\right), 7.13(\mathrm{~m}, 18 \mathrm{H}$, PPh_{3}), $7.20\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SnPh}_{3}\right), 7.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SnPh}_{3}\right), 7.63$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right):-7.0$ (s with Sn satellites, ${ }^{1} J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=128.6,{ }^{2} J_{\mathrm{Sn}(117 / 199) \mathrm{C}}=53.0 \mathrm{~Hz}$, $\mathrm{Sn} M e_{2} \mathrm{SnPh}_{3}$), 36.2 ($\mathrm{s}, \mathrm{S}_{2} \mathrm{CN} M e_{2}$), 36.5 ($\mathrm{s}, \mathrm{S}_{2} \mathrm{CN} M e_{2}$), $127.1\left(\mathrm{~s}, \mathrm{SnPh}_{3}\right), 127.3$ (s, $o-\mathrm{PPh}_{3}$), 127.6 (s with Sn satellites, $J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=18.1 \mathrm{~Hz}, \mathrm{SnPh}_{3}$), 129.3 (broad s, p $\left.\mathrm{PPh}_{3}\right), 134.2\left(\mathrm{t}^{\prime},{ }^{1,3} J_{\mathrm{PC}}=50.3 \mathrm{~Hz}, i-\mathrm{PPh}_{3}\right), 134.7($ broad s, $m-\mathrm{PPh}_{3}$), 138.1 (s with Sn satellites, $J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=37.2 \mathrm{~Hz}$, $\left.\mathrm{SnPh}_{3}\right), 144.1 \quad\left(\mathrm{~s}, \quad \mathrm{SnPh}_{3}\right), 187.9 \quad\left(\mathrm{t},{ }^{2} J_{\mathrm{PC}}=12.1 \mathrm{~Hz}\right.$, CO), $209.8\left(\mathrm{~s}, \mathrm{~S}_{2} \mathrm{CNMe} 2\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, δ): 5.8 (s with Sn satellites, ${ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=90.9 \mathrm{~Hz}$). ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right)$: -230.3 (t with Sn satellites, ${ }^{3} J_{\mathrm{Sn}(199) \mathrm{P}}=15,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=1061,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=$ $1120 \mathrm{~Hz}, \mathrm{SnMe}_{2} \mathrm{SnPh}_{3}$), -293.6 (t with Sn satellites, ${ }^{2} J_{\operatorname{Sn}(119) \mathrm{P}}=90,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=1074,{ }^{1} J_{\operatorname{Sn}(119) \operatorname{Sn}(119)}=1119$ $\mathrm{Hz}, \mathrm{SnMe}_{2} \mathrm{SnPh}_{3}$).

4.5. Preparation of $\mathrm{Os}\left(\mathrm{SnClMeSnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ $(C O)\left(P P h_{3}\right)_{2}(4)$

$\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{3})(0.178 \mathrm{~g}$, $0.131 \mathrm{mmol})$ and $\mathrm{SnMe}_{2} \mathrm{Cl}_{2}(0.028 \mathrm{~g}, 0.131 \mathrm{mmol})$ were codissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting pale yellow solution stirred at room temperature for ca. 16 h . All volatiles were removed in vacuo and the residual pale yellow solution recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ to afford pure

4 as similarly coloured microcrystals (yield $0.178 \mathrm{~g}, 98 \%$). Anal. Calc. for $\mathrm{C}_{59} \mathrm{H}_{54} \mathrm{ClNOOsP}_{2} \mathrm{~S}_{2} \mathrm{Sn}_{2}$: C, $51.27 ; \mathrm{H}$, 3.94; N, 1.01. Found: C, 51.14; H, 3.67; N, 1.06\%. IR $\left(\mathrm{cm}^{-1}\right): 1898 v(\mathrm{CO}) ; 1522\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, δ): 0.18 (s with Sn satellites, $3 \mathrm{H},{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=26.9$, $\left.{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=21.5 \mathrm{~Hz}, \quad \mathrm{Sn} M e \mathrm{ClSnPh}_{3}\right), \quad 2.00 \quad(\mathrm{~s}$, $\left.\mathrm{S}_{2} \mathrm{CN} M e_{2}\right), 2.24\left(\mathrm{~s}, \mathrm{~S}_{2} \mathrm{CN} M e_{2}\right), 7.17(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ph}), 7.23$ $(\mathrm{m}, 12 \mathrm{H}, \mathrm{Ph}), 7.42\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{SnPh}_{3}\right), 7.57\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right)$, $7.74\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 4.59(\mathrm{~s}, \mathrm{Sn} M e)$, 36.2 ($\mathrm{s}, \mathrm{S}_{2} \mathrm{CN} M e_{2}$), 36.5 ($\mathrm{s}, \mathrm{S}_{2} \mathrm{CN} M e_{2}$), 127.2 (broad m, $\mathrm{Sn} P h$ or PPh), 127.7 (broad m, $\mathrm{Sn} P h$ or PPh), 127.8 (s with Sn satellites, $\left.J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=41.7 \mathrm{~Hz}, \mathrm{Sn} P h\right), 129.4(\mathrm{~s}, \mathrm{Sn} P h$ or PPh), 129.8 (s, $\mathrm{Sn} P h$ or PPh), 134.3 (broad m, $\mathrm{Sn} P h$ or PPh), 134.8 (broad m, $\mathrm{Sn} P h$ or PPh), 138.1 (s with Sn satellites, $\left.J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=36.9 \mathrm{~Hz}, \mathrm{Sn} P h\right), 142.7(\mathrm{~s}, \mathrm{Sn} P h$ or PPh), 186.3 (s , coupling to P not observed, CO), 209.1 (s, $\left.\mathrm{S}_{2} \mathrm{CNMe}\right)_{2}$) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right.$): 3.9 (s with Sn satellites, $\left.{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=81.5,{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=11.5 \mathrm{~Hz}\right)$.
${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right)$: -50.1 (t with Sn satellites, ${ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}}=84,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=807,{ }^{1} J_{\mathrm{Sn}(119) \operatorname{Sn}(119)}$ $=836 \mathrm{~Hz}, \mathrm{SnClMeSnPh} 3$), -200.2 (t with Sn satellites, ${ }^{3} J_{\mathrm{Sn}(119) \mathrm{P}}=15,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=791,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=836 \mathrm{~Hz}$, $\mathrm{SnClMeSn} \mathrm{Ph}_{3}$).

4.6. Preparation of $\operatorname{Os}\left(\mathrm{SnIMeSnPh}_{3}\right)\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)$ (CO) $\left(\mathrm{PPh}_{3}\right)_{2}$ (5)

To a stirred pale yellow solution of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)$ -$\left(\kappa^{2}-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (3) $(0.103 \mathrm{~g}, 0.076 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, cooled in a $\mathrm{CO}_{2}(\mathrm{~s}) /$ ethanol bath, was added dropwise a solution of $\mathrm{I}_{2}(0.019 \mathrm{~g}, 0.076 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The purple colour of the I_{2} was discharged immediately and after complete addition all volatiles were removed in vacuo from the resulting pale yellow solution. Recrystallisation of the residual yellow solid afforded pure 5 as a colourless, microcrystalline solid ($0.094 \mathrm{~g}, 84 \%$). Anal. Calc. for $\mathrm{C}_{59} \mathrm{H}_{54} \mathrm{INOOsP} \mathrm{S}_{2} \mathrm{~S}_{2} \mathrm{Sn}_{2}$: C, 48.09; H, 3.69; N, 0.95. Found: C, $48.51 ; \mathrm{H}, 3.46 ; \mathrm{N}, 1.00 \%$. IR (cm^{-1}): $1911 v(\mathrm{CO}) ; 1528\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 0.50$ $\left(\mathrm{s}, 3 \mathrm{H},{ }^{2 / 3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=23.0 \mathrm{~Hz}, \mathrm{Sn} M e \mathrm{ISnPh}_{3}\right), 2.04(\mathrm{~s}$, $\left.\mathrm{S}_{2} \mathrm{CN} M e_{2}\right), 2.20\left(\mathrm{~s}, \mathrm{~S}_{2} \mathrm{CN} M e_{2}\right), 7.12(\mathrm{~m}, 13 \mathrm{H}, P h), 7.24$ $(\mathrm{m}, 12 \mathrm{H}, P h), 7.55\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Sn} P h_{3}\right), 7.55\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{P} P h_{3}\right)$, $7.71(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh} 3) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 3.9(\mathrm{~s}, \mathrm{Sn}$ satellites not observed, $\operatorname{Sn} M e$), 36.2 ($\mathrm{s}, \mathrm{S}_{2} \mathrm{CN} M e_{2}$), 36.5 (s , $\mathrm{S}_{2} \mathrm{CN} \mathrm{Me}_{2}$), 127.2 (m, $\mathrm{Sn} P h$ or PPh), 127.7 (m, SnPh or PPh), 127.8 (s with Sn satellites, $J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=40.2 \mathrm{~Hz}$, $\mathrm{Sn} P h_{3}$), 129.2 (m, SnPh or PPh), 129.5 (m, $\mathrm{Sn} P h$ or $\mathrm{P} P h$), $129.8(\mathrm{~m}, \mathrm{Sn} P h$ or PPh$), 130.1$ (m, SnPh or PPh), 134.4 ($\mathrm{m}, \mathrm{Sn} P h$ or $\mathrm{P} P h$), $135.0(\mathrm{~m}, \mathrm{Sn} P h$ or $\mathrm{P} P h), 138.1$ (s, $\mathrm{Sn} P h_{3}$), 138.2 (s with Sn satellites, $J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=27.2 \mathrm{~Hz}$, $\mathrm{Sn} P h_{3}$), 142.3 ($\mathrm{s}, \mathrm{Sn} P h_{3}$), 186.2 (s , coupling to P not observed, CO), 208.2 (s, $\mathrm{S}_{2} C \mathrm{NMe}_{2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right): 2.3$ (s with Sn satellites, ${ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}$ $=91.6,{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=14.3 \mathrm{~Hz}$), 3.2 (see discussion) (s with Sn satellites, ${ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=62.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}$ not resolved). ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right):-245.3$ (dd with Sn satellites, ${ }^{3} J_{\mathrm{Sn}(119) \mathrm{P}(\mathrm{a})}=15,{ }^{3} J_{\mathrm{Sn}(119) \mathrm{P}(\mathrm{b})}=7$
(see discussion for explanation of $\mathrm{P}(\mathrm{a})$ and $\mathrm{P}(\mathrm{b})$), $\left.{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=522,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=537 \mathrm{~Hz} \mathrm{SnIMeSnPh} 3\right)$, -156.4 (dd with Sn satellites, $\quad{ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}(\mathrm{a})}=93$, ${ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}(\mathrm{b})}=64, \quad{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=525, \quad{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=$ $531 \mathrm{~Hz}, \mathrm{SnIMeSnPh} 3$).

4.7. Preparation of $\mathrm{Os}\left(\mathrm{SnClMe}_{2}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (6)

$\mathrm{Os}\left(\mathrm{SnMe}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad(0.464 \mathrm{~g}, \quad 0.478 \mathrm{mmol})$ and $\mathrm{SnMe}_{2} \mathrm{Cl}_{2}(0.104 \mathrm{~g}, 0.478 \mathrm{mmol})$ were codissolved in dichloromethane $(10 \mathrm{~mL})$ and the resulting colourless solution stirred at room temperature for ca. 16 h . All volatiles were removed in vacuo and the residual colourless solid recrystallised from dichloromethane-ethanol to afford pure 6 as a colourless microcrystalline solid ($0.416 \mathrm{~g}, 88 \%$). Anal. Calc. for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2} \mathrm{Sn}$: C, 48.50; H, 3.66. Found: C, 48.15; H, 3.79\%. IR (cm^{-1}): 2025, $1966 v(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 0.21$ (s with Sn satellites, $6 \mathrm{H},{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=$ $35.6 \mathrm{~Hz}, \mathrm{Sn} \mathrm{Me}_{2}$), $7.40\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{P} P h_{3}\right), 7.82(\mathrm{~m}, 12 \mathrm{H}$, PPh_{3}). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.8$ (s with Sn satellites, $\left.{ }^{1} J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=176.1 \mathrm{~Hz}, \quad \mathrm{Sn} M e_{2}\right), \quad 128.5 \quad\left(\mathrm{t}^{\prime}, \quad{ }^{2,4} J_{\mathrm{PC}}=\right.$ $\left.10.4 \mathrm{~Hz}, o-\mathrm{P} P h_{3}\right), 130.8\left(\mathrm{~s}, p-\mathrm{P} P h_{3}\right), 133.6\left(\mathrm{t}^{\prime},{ }^{3,5} J_{\mathrm{PC}}=\right.$ $\left.10.6 \mathrm{~Hz}, m-\mathrm{PPh} h_{3}\right), 133.7\left(\mathrm{t}^{\prime},{ }^{1,3} J_{\mathrm{PC}}=54.6 \mathrm{~Hz}, i-\mathrm{P} P h_{3}\right)$, $175.1\left(\mathrm{t},{ }^{2} J_{\mathrm{PC}}=6.0 \mathrm{~Hz}, C \mathrm{O}\right), 177.6\left(\mathrm{t},{ }^{2} J_{\mathrm{PC}}=9.4 \mathrm{~Hz}, C \mathrm{O}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right): 3.9$ (s with Sn satellites, $\left.{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=147.6 \mathrm{~Hz}\right) . \quad{ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR $\quad\left(\mathrm{CDCl}_{3} /\right.$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right): 114.4\left(\mathrm{t},{ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}}=150 \mathrm{~Hz}\right)$.

4.8. Preparation of $\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (7)

To a stirred, colourless solution of $\mathrm{Os}\left(\mathrm{SnClMe}_{2}\right) \mathrm{Cl}(\mathrm{CO})_{2^{-}}$ $\left(\mathrm{PPh}_{3}\right)_{2}(6)(0.514 \mathrm{~g}, 0.519 \mathrm{mmol})$ in thf $(5 \mathrm{~mL})$ was added a $0.36 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of KSnPh_{3} in thf $(4.3 \mathrm{~mL}$, 1.557 mmol). After continued stirring at room temperature for ca. 1.5 h , a slightly cloudy, yellow solution resulted. $\mathrm{EtOH}(20 \mathrm{~mL})$ was added and concentration of the mixture, in vacuo, afforded a pale coloured precipitate. Analysis of this material by tlc on silica gel, eluting with $1: 1$ dichorom-ethane-hexane, indicated a mixture containing two components $\left(\mathrm{Sn}_{2} \mathrm{Ph}_{6}: R_{\mathrm{F}}=0.6\right.$ and 7: $\left.R_{\mathrm{F}}=0.3\right)$, and these could not be separated by recrystallisation. Purification by flash chromatography, under the above conditions, afforded pure 7 as a colourless crystalline solid ($0.432 \mathrm{~g}, 62 \%$). Anal. Calc. for $\mathrm{C}_{57} \mathrm{H}_{51} \mathrm{ClO}_{2} \mathrm{OsP}_{2} \mathrm{Sn}_{2}$: C, 52.95; H, 3.98. Found: C, $52.63 ; \mathrm{H}, 3.70 \%$. IR $\left(\mathrm{cm}^{-1}\right): 2017,1958 v(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right):-0.12$ (s with Sn satellites, $6 \mathrm{H},{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}$ $\left.=32.4,{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=26.8 \mathrm{~Hz}, \quad \mathrm{Sn} M e_{2} \mathrm{SnPh}_{3}\right), 7.25(\mathrm{~m}$, $26 \mathrm{H}, \mathrm{Ph}), 7.45\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Sn} P h_{3}\right), 7.76\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{P} P h_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right):-5.7(\mathrm{~s}, \mathrm{Sn}$ satellites not observed, $\mathrm{Sn} \mathrm{Me}_{2}$), 127.4 ($\mathrm{s}, \mathrm{Sn} \mathrm{Ph}_{3}$), 127.8 (s with Sn satellites, $\left.J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=38.2 \mathrm{~Hz}, \operatorname{Sn} P h_{3}\right), 128.3\left(\mathrm{t}^{\prime},{ }^{2,4} J_{\mathrm{PC}}=10.1 \mathrm{~Hz}\right.$, $\left.o-\mathrm{P} P h_{3}\right), 130.5\left(\mathrm{~s}, p-\mathrm{P} P h_{3}\right), 133.6\left(\mathrm{t}^{\prime},{ }^{1,3} J_{\mathrm{PC}}=56.3 \mathrm{~Hz}\right.$, $i-\mathrm{P} P h_{3}$), $133.7\left(\mathrm{t}^{\prime},{ }^{3,5} J_{\mathrm{PC}}=10.0 \mathrm{~Hz}, m-\mathrm{P} P h_{3}\right), 138.0$ (s with Sn satellites, $\left.J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=37.2 \mathrm{~Hz}, \mathrm{Sn} P h_{3}\right), 143.5$ $\left(\mathrm{s}, \mathrm{Sn} P h_{3}\right), 177.5$ (s , coupling to P not observed, $C \mathrm{O}$), 178.0 (s , coupling to P not observed, CO). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right)$: -10.4 (s with Sn satellites,
${ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=140.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}$ poorly resolved and not measured). ${ }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right)$: -203.5 (t with Sn satellites, ${ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}}=149,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=$ $\left.1298,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=1358 \mathrm{~Hz}, S n \mathrm{Me}_{2} \mathrm{SnPh}_{3}\right),-163.3$ (s, Pcoupling not resolved but with Sn satellites, ${ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=$ $\left.1268,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=1343 \mathrm{~Hz}, \mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right)$.

4.9. Preparation of $\mathrm{Os}(\mathrm{SnClMeSnPh} 3) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$

 (8)$\mathrm{Os}\left(\mathrm{SnMe}_{2} \mathrm{SnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.201 \mathrm{~g}, 0.154 \mathrm{mmol})$ and $\mathrm{SnMe}_{2} \mathrm{Cl}_{2}(0.169 \mathrm{~g}, 0.770 \mathrm{mmol})$ were codissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting colourless solution stirred at room temperature for ca. 16 h . All volatiles were then removed in vacuo and the residual colourless solid recrystallised from dichloromethane-ethanol to afford pure $\mathbf{8}$ as a colourless microcrystalline solid $(0.176 \mathrm{~g}, 86 \%)$. Anal. Calc. for $\mathrm{C}_{57} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2} \mathrm{Sn}_{2}$: C, $51.65 ; \mathrm{H}, 3.65$. Found: C, $51.85 ; \mathrm{H}, 3.43 \%$. IR $\left(\mathrm{cm}^{-1}\right): 2019,1958 v(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 0.22$ (s with Sn satellites, $3 \mathrm{H},{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=$ $\left.23.3,{ }^{3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}=21.4 \mathrm{~Hz}, \operatorname{Sn} M e \mathrm{ClSnPh}_{3}\right), 7.16(\mathrm{~m}$, $13 \mathrm{H}, P h), 7.26(\mathrm{~m}, 12 \mathrm{H}, P h), 7.50\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Sn} P h_{3}\right), 7.71$ $\left.\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{P} \mathrm{Ph}_{3}\right), 7.86(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh})_{3}\right) \cdot{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, δ): 5.8 (s , coupling to Sn not observed, $\mathrm{Sn} M e$), 128.0 (s, $P h$), 128.1 (s with Sn satellites, $J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=43.5 \mathrm{~Hz}$, $\mathrm{Sn} P h), 128.3\left(\mathrm{~m}, o-\mathrm{PPh} h_{3}\right), 128.8\left(\mathrm{~m}, o-\mathrm{PPh} h_{3}\right), 130.5(\mathrm{~s}, p-$ $\left.\mathrm{PPh}_{3}\right), 131.0\left(\mathrm{~s}, p-\mathrm{PPh} h_{3}\right), 133.1\left(\mathrm{~m}, m-\mathrm{PPh} h_{3}\right), 133.6(\mathrm{~m}, m-$ PPh_{3}), 138.1 (s with Sn satellites, $J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=37.8 \mathrm{~Hz}$, $\mathrm{Sn} P h_{3}$), $142.1\left(\mathrm{~s}, \mathrm{Sn} P h_{3}\right), 174.9(\mathrm{~m}, \mathrm{CO}), 176.9$ (m, CO). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right):-10.7$ (s with Sn satellites, $\left.{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=142.4 \mathrm{~Hz}\right),-10.5$ (s with Sn satellites, $\left.{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=136.0 \mathrm{~Hz}\right) .{ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} /\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta$): -140.7 (apparent t with Sn satellites, ${ }^{3} J_{\mathrm{Sn}(119) \mathrm{P}}=15,{ }^{1} J_{\mathrm{Sn}(117) \mathrm{Sn}(119)}=910,{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=946$ $\mathrm{Hz}, \mathrm{SnClMeSn} \mathrm{Ph}_{3}$), 35.9 (apparent t with Sn satellites, ${ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}}=144,{ }^{1} J_{\mathrm{Sn}(117) \operatorname{Sn}(119)}=910,{ }^{1} J_{\mathrm{Sn}(119) \operatorname{Sn}(119)}=940$ $\mathrm{Hz}, \mathrm{SnClMeSnPh} 3$).

4.10. Preparation of $\mathrm{Os}\left(\mathrm{SnIMeSnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (9)

To a stirred clear, colourless solution of $\mathrm{Os}(\mathrm{Sn}-$ $\left.\mathrm{Me}_{2} \mathrm{SnPh}_{3}\right) \mathrm{Cl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.122 \mathrm{~g}, 0.093 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$, cooled in a $\mathrm{CO}_{2}(\mathrm{~s}) /$ ethanol bath, was added dropwise a solution of $\mathrm{I}_{2}(0.024 \mathrm{~g}, 0.093 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. The purple colour of the I_{2} was discharged immediately and after complete addition all volatiles were removed in vacuo from the resulting pale yellow solution. Recrystallisation of the residual pale yellow solid afforded pure 9 as a colourless, microcrystalline solid ($0.109 \mathrm{~g}, 83 \%$). Anal. Calc. for $\mathrm{C}_{57} \mathrm{H}_{48} \mathrm{ClIO}_{2} \mathrm{OsP}_{2} \mathrm{Sn}_{2}$: C, $48.32 ; \mathrm{H}, 3.41$. Found: C , 48.36; H, 3.24\%. IR (cm^{-1}): 2026, $1969 v(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 0.51$ (s with Sn satellites, $3 \mathrm{H},{ }^{2 / 3} J_{\mathrm{Sn}(117 / 119) \mathrm{H}}$ $\left.=22.7 \mathrm{~Hz}, \mathrm{Sn} M e \mathrm{ISnPh}_{3}\right), 7.18\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PPh} h_{3}\right), 7.27(\mathrm{~m}$, $7 \mathrm{H}, \mathrm{Sn} P h_{3}$), $7.57\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Sn} P h_{3}\right), 7.71\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{P} P h_{3}\right), 7.76$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{P} P h_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 3.3$ (s, coupling to Sn not observed, $\mathrm{Sn} M e$), 128.1 (s with Sn satellites,
$\left.J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=44.3 \mathrm{~Hz}, \mathrm{Sn} P h\right), 128.3\left(\mathrm{~m}, o-\mathrm{PPh} h_{3}\right), 128.8(\mathrm{~m}$, $\left.o-\mathrm{P} P h_{3}\right), 130.7\left(\mathrm{~s}, p-\mathrm{PPh} h_{3}\right), 131.0\left(\mathrm{~s}, p-\mathrm{P} P h_{3}\right), 132.4$ (apparent $\left.\mathrm{dd}, J_{\mathrm{PC}}=39.2, J_{\mathrm{PC}}=15.1 \mathrm{~Hz}, i-\mathrm{PPh}_{3}\right), 132.92$ (apparent d, $\left.J_{\mathrm{PC}}=15.1 \mathrm{~Hz}, i-\mathrm{PPh}_{3}\right), 133.3\left(\mathrm{~m}, m-\mathrm{PPh}_{3}\right), 134.0(\mathrm{~m}$, $m-\mathrm{PPh} h_{3}$), 138.2 (s with Sn satellites, $J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=$ $37.2 \mathrm{~Hz}, \mathrm{Sn} P h_{3}$), 144.8 (s with Sn satellites, $J_{\mathrm{Sn}(117 / 119) \mathrm{C}}=$ $36.2 \mathrm{~Hz}, \mathrm{Sn} P h_{3}$), 175.5 (m, CO), 175.7 (m, CO). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \delta\right):-10.2$ (s with Sn satellites, $\left.{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=133.9 \mathrm{~Hz}\right),-10.4$ (s with Sn satellites, $\left.{ }^{2} J_{\mathrm{Sn}(117 / 119) \mathrm{P}}=137.8 \mathrm{~Hz}\right) .{ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\delta):-183.9$ (apparent $\mathrm{t},{ }^{3} J_{\mathrm{Sn}(119) \mathrm{P}}=15,{ }^{1} J_{\mathrm{Sn}(117) \operatorname{Sn}(119)}=671$, $\left.{ }^{1} J_{\mathrm{Sn}(119) \mathrm{Sn}(119)}=701 \mathrm{~Hz}, \operatorname{SnMeISnPh} 3\right),-95.0($ apparent t , ${ }^{2} J_{\mathrm{Sn}(119) \mathrm{P}}=140, \quad{ }^{1} J_{\mathrm{Sn}(117) \operatorname{Sn}(119)}=673, \quad{ }^{1} J_{\mathrm{Sn}(119) \operatorname{Sn}(119)}=$ $698 \mathrm{~Hz}, S n \mathrm{MeISnPh} 3$).

4.11. X-ray crystal structure determinations for complexes $\mathbf{3}$ and 7

X-ray data collection was by Siemens SMART diffractometer with a CCD area detector using graphite monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ at 150 K . Data were integrated and corrected for Lorentz and polarisation effects using saint [26]. Semi-empirical absorption corrections were applied based on equivalent reflections using sadabs [27]. The structure was solved by Patterson and Fourier methods and refined by full-matrix least squares on F^{2} using programs shelxs [28] and shelxl [29]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located geometrically and refined using a riding model. Crystal data and refinement details for both structures are given in Table 1.

Acknowledgements

We thank the Humboldt Foundation for granting a Post Doctoral Fellowship to M.M.M.; the Royal Society, London, for granting a Post Doctoral Fellowship to G.R.W.; and the Marsden Fund, administered by the Royal Society of New Zealand, for granting a Post Doctoral Fellowship to G.R.W.

Appendix A. Supplementary material

Crystallographic data (excluding structure factors) for 3 and 7have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publications Nos. 602840 and 602841. Copies of this information can be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +441223 336 033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk). Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2006.06.010.

References

[1] M. Okazaki, H. Tobita, H. Ogino, Dalton Trans. (2003) 493.
[2] H.K. Sharma, K.H. Pannell, Chem. Rev. 95 (1995) 1351.
[3] T. Watanabe, H. Hashimoto, H. Tobita, Organometallics 23 (2004) 4150.
[4] W. Malisch, H. Jehle, S. Möller, G. Thum, J. Reising, A. Gbureck, V. Nagel, C. Fickert, W. Kiefer, M. Nieger, Eur. J. Inorg. Chem. (1999) 1597.
[5] W. Malisch, H. Jehle, S. Möller, C. Saha-Möller, W. Adam, Eur. J. Inorg. Chem. (1998) 1585.
[6] G. Butler, C. Eaborn, A. Pidcock, J. Organomet. Chem. 185 (1980) 367.
[7] N.R. Neale, T.D. Tilley, Tetrahedron 60 (2004) 7247.
[8] W. Kläui, H. Werner, J. Organomet. Chem. 54 (1973) 331.
[9] M.J. Chetcuti, M.H. Chisholm, H.T. Chiu, J.C. Huffman, J. Am. Chem. Soc. 105 (1983) 1060.
[10] (a) K.D. Bos, E.J. Bulten, J.G. Noltes, A.L. Spek, J. Organomet. Chem. 92 (1975) 33;
(b) A.L. Spek, K.D. Bos, E.J. Bulten, J.G. Noltes, Inorg. Chem. 15 (1976) 339.
[11] C. Combes, R.J.P. Corriu, G. Dabosi, B.J.L. Henner, M. Martineau, J. Organomet. Chem. 270 (1984) 141.
[12] J.A.J. Thompson, W.A.G. Graham, Inorg. Chem. 6 (1967) 1875.
[13] C.E.F. Rickard, W.R. Roper, T.J. Woodman, L.J. Wright, Chem. Commun. (1999) 837.
[14] G.-L. Lu, M.M. Möhlen, C.E.F. Rickard, W.R. Roper, L.J. Wright, Inorg. Chim. Acta 358 (2005) 4145.
[15] A.M. Clark, C.E.F. Rickard, W.R. Roper, T.J. Woodman, L.J. Wright, Organometallics 19 (2000) 1766.
[16] M.M. Möhlen, C.E.F. Rickard, W.R. Roper, G.R. Whittell, L.J. Wright, Inorg. Chim. Acta (2006) in press, doi:10.1016/ j.ica.2005.12.082.
[17] (a) A.G. Davies, Organotin Chemistry, second ed., Wiley-VCH, Weinheim, 2004;
(b) T.N. Mitchell, G. Walter, J. Chem. Soc., Perkin II (1977) 1842;
(c) J.D. Kennedy, W. McFarlane, J. Chem. Soc., Dalton (1976) 1219.
[18] H. Preut, H.J. Haupt, F. Huber, Z. Anorg. Allg. Chem. 396 (1973) 81.
[19] D.H. Olsen, R.E. Rundle, Inorg. Chem. 2 (1963) 1310.
[20] R. Kummer, W.A.G. Graham, Inorg. Chem. 7 (1968) 1208.
[21] W. Kläui, H. Werner, J. Organomet. Chem. 60 (1973) C19.
[22] S.M. Maddock, C.E.F. Rickard, W.R. Roper, L.J. Wright, Organometallics 15 (1996) 1793.
[23] P.R. Craig, K.R. Flower, W.R. Roper, L.J. Wright, Inorg. Chim. Acta 240 (1995) 385.
[24] (a) C. Tamborski, F.E. Ford, E.J. Soloski, J. Org. Chem. 28 (1963) 237; (b) W. Kitching, H. Olszowy, J. Waugh, D. Doddrell, J. Org. Chem. 43 (1978) 898.
[25] R. Corriu, C. Guerin, B. Kolani, Inorg. Synth. 25 (1989) 110.
[26] saint, Area Detector Integration Software, Siemens Analytical Instruments Inc., Madison, WI, USA, 1995.
[27] G.M. Sheldrick, sadabs, Program for Semi-empirical Absorption Correction, University of Göttingen, Göttingen, Germany, 1997.
[28] G.M. Sheldrick, shelxs, Program for Crystal Structure Determination, University of Göttingen, Göttingen, Germany, 1977.
[29] G.M. Sheldrick, Shelxl, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.

[^0]: * Corresponding authors. Tel.: +64 9373 7999x88320; fax: +64 9373 7422.

 E-mail address: w.roper@auckland.ac.nz (W.R. Roper).

